15 resultados para phylogeography

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geographic ranges of European plants and animals underwent periods of contraction and re-colonisation during the climatic oscillations of the Pleistocene. The southern Mediterranean peninsulas (Iberian, Italian and Balkan) have been considered the most likely refugia for temperate/warm adapted species. Recent studies however have revealed the existence of extra-Mediterranean refugia, including the existence of cryptic north-west European refugia during the Last Glacial Maxima (24-14.6 kyr BP). In this study we elucidated the phylogeographic history of two sibling bat species, Pipistrellus pipistrellus and P. pygmaeus in their western European range. We sequenced the highly variable mtDNA D-loop for 167 samples of P. pipistrellus (n = 99) and P. pygmaeus (n = 68) and combined our data with published sequences from 331 individuals. Using phylogenetic methodologies we assessed their biogeographic history. Our data support a single eastern European origin for populations of P. pygmaeus s.str., yet multiple splits and origins for populations of P. pipistrellus s.str., including evidence for refugia within refugia and potential cryptic refugia in north western Europe and in the Caucasus. This complex pattern in the distribution of mtDNA haplotypes supports a long history for P. pipistrellus s.str. in Europe, and the hypothesis that species with a broad ecological niche may have adapted and survived outside southern peninsula throughout the LGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum(LGM), some 20 000 years BP. The Leisler’s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrialDNAlineages,which probably diverged in separate glacial refugia. Awestern lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, sharks are under enormous pressure from fishing efforts. One such species is the silky shark, Carcharhinus falciformis, which occurs in all the Earth’s tropical oceans and is captured in large numbers in pelagic fisheries. Regionally, the silky shark is listed as Vulnerable to Near Threatened by the International Union for the Conservation of Nature due to high levels of direct and by catch exploitation. Despite major conservation concerns about this species, little is known about its genetic status and level of demographic or evolutionary connectivity among its regional distributions. We report a genetic assessment of silky sharks sampled across a major portion of the species’ global range. We sequenced the complete mitochondrial DNA control region from 276 individuals taken from the western Atlantic and Indo-Pacific Oceans and the Red Sea. Overall, haplotype and nucleotide diversities were relatively large (0.93 ± 0.01 and 0.61 ± 0.32 %, respectively). Nucleotide diversity in Indo-Pacific sharks, however, was significantly lower and about half that in Atlantic sharks. Strong phylogeographic partitioning occurred between ocean basins. Furthermore, shallow but significant pairwise statistical differentiation occurred among most regional samples within the Indo-Pacific, but not the western Atlantic. Overall, at least five mitochondrial DNA populations of silky sharks were identified globally. Despite historically large population sizes, silky sharks appear to be isolated on relatively small spatial scales, at least in the Indo-Pacific, indicating that conservation and management efforts will need to be exerted at relatively small scales in a pelagic and highly vagile species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2–3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128 000 bp and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20 000 bp) in the Hurd Deep, an enigmatic trench in the English Channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum ~21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two singlecopy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e. g. predators); thus, it is often assumed that species' distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e. g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested whether the distribution of three common springtail species (Gressittacantha terranova, Gomphiocephalus hodgsoni and Friesea grisea) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.

Victoria Land, Ross Dependency, Antarctica.

Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.

Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea.

No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.

There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.

Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.

The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.

The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human settlement of Oceania marked the culmination of a global colonization process that began when humans first left Africa at least 90,000 years ago. The precise origins and dispersal routes of the Austronesian peoples and the associated Lapita culture remain contentious, and numerous disparate models of dispersal (based primarily on linguistic, genetic, and archeological data) have been proposed. Here, through the use of mtDNA from 781 modern and ancient Sus specimens, we provide evidence for an early human-mediated translocation of the Sulawesi warty pig (Sus celebensis) to Flores and Timor and two later separate human-mediated dispersals of domestic pig (Sus scrofa) through Island Southeast Asia into Oceania. Of the later dispersal routes, one is unequivocally associated with the Neolithic (Lapita) and later Polynesian migrations and links modern and archeological Javan, Sumatran, Wallacean, and Oceanic pigs with mainland Southeast Asian S. scrofa. Archeological and genetic evidence shows these pigs were certainly introduced to islands east of the Wallace Line, including New Guinea, and that so-called "wild" pigs within this region are most likely feral descendants of domestic pigs introduced by early agriculturalists. The other later pig dispersal links mainland East Asian pigs to western Micronesia, Taiwan, and the Philippines. These results provide important data with which to test current models for human dispersal in the region. © 2007 by The National Academy of Sciences of the USA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium bovis is the causal agent of bovine tuberculosis, one of the most important diseases currently facing the UK cattle industry. Here, we use high-density whole genome sequencing (WGS) in a defined sub-population of M. bovis in 145 cattle across 66 herd breakdowns to gain insights into local spread and persistence. We show that despite low divergence among isolates, WGS can in principle expose contributions of under-sampled host populations to M. bovis transmission. However, we demonstrate that in our data such a signal is due to molecular type switching, which had been previously undocumented for M. bovis. Isolates from farms with a known history of direct cattle movement between them did not show a statistical signal of higher genetic similarity. Despite an overall signal of genetic isolation by distance, genetic distances also showed no apparent relationship with spatial distance among affected farms over distances <5 km. Using simulations, we find that even over the brief evolutionary timescale covered by our data, Bayesian phylogeographic approaches are feasible. Applying such approaches showed that M. bovis dispersal in this system is heterogeneous but slow overall, averaging 2 km/year. These results confirm that widespread application of WGS to M. bovis will bring novel and important insights into the dynamics of M. bovis spread and persistence, but that the current questions most pertinent to control will be best addressed using approaches that more directly integrate WGS with additional epidemiological data.